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Abstract. The migration energies EM for the jumps into nearest-neighbour vacancies in L12
intermetallic compounds are related to the static lattice Green functions that can be calculated from
the measured phonon dispersions. The present approach is an extension of a similar approach used
earlier for BCC and FCC pure metals (Schober H R, Petry W and Trampenau J 1992 J. Phys.:
Condens. Matter 4 9321). In A3B compounds with the L12 structure, three first-nearest-neighbour
jumps into vacancies have to be distinguished and in some cases there is a bias, �E, between
final and initial configurations. As was done earlier for monatomic lattices by Schober et al, the
migration energy is split into two terms, one depending only on structure and a material-dependent
term, given by the Green function elements. The difference in size between A and B atoms has to be
taken into account and the compounds have to be separated into two groups depending on the size
of the majority atoms relative to the minority ones. The formulae have been checked by computer
simulations. The values of EM or EM − �E/2 are calculated for those L12 compounds where
the phonon dispersions have been measured. In the case of the Ni3Al system, other theoretical
and experimental determinations compare well with our model. Comparing these energies with
the critical temperatures of stability of the L12 structure, we note a significant contribution of the
ordering energy to the migration energy for all three jump types.

1. Introduction

Among the three energetic parameters that drive self-diffusion and ordering kinetics in ordered
intermetallic compounds, i.e. the activation (EA), the formation (EF ) and the migration (EM )
energies, the latter one is experimentally least well known and hardest to measure [1]. EM

has been determined directly for B2-ordered compounds at high temperatures by positron
lifetime measurements (FeAl [2, 3] and NiAl [4]) and by length change studies (FeAl and
NiAl [5], NiGa and CoGa [6]) of the equilibration process of thermal vacancies during a
temperature change. In compounds exhibiting other structures (DO3, L12, DO19), direct
determinations are scarce and EM was in some cases deduced from the difference between EA

(from self-diffusion or ordering kinetics) and EF (from positron lifetime spectroscopy) [1].
To the authors’ knowledge, direct determinations of the migration energies in those structures
exist only in the cases of L12-Ni3Al [7] and DO3-Fe3Al [3], deduced from measurements
of recovery after electron irradiation or quenching by means of positron annihilation studies.
Moreover, all the migration barriers were averaged over both species and over their respective
initial and final sublattices.

Recently, a model relating the migration energy for vacancies in cubic metals to the
phonon dispersion has been proposed by one of the present authors [8]. This model follows
the earlier ideas of Herzig [9] to explain the fast diffusion in BCC metals by the presence of
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soft phonon modes. In this model, the migration energy EM is estimated from the following
relation:

EM = αG−1
0 a2 where G0 =

∫
Z(ω)

Mω2
dω. (1)

In this equation, EM is separated into a structural term (α), common to all FCC or BCC metals,
and a term (G0), the static lattice Green function, which is the ω−2-moment of the normalized
phonon density of states Z(ω). It is due to this ω−2-weighting that low-energy phonons are
the essential quantities for probing the migration barrier. a is the lattice parameter and M

the atomic mass. αFCC = 0.0135(7) and αBCC = 0.0130(7) have been found from molecular
statics simulations. This model extends the earlier model of Flynn [10] who related EM to the
elastic constants, i.e. the continuum limit of the phonon spectrum.

In the high-temperature approximation the mean square displacement, which is inversely
proportional to the curvature of the equilibrium potential of the perfect lattice, can be expressed
as 〈u2

x〉 = kBTG0 (see e.g. [11]) which shows, together with equation (1), that, at a certain
temperature T , EM is related to the curvature of this equilibrium potential.

For FCC metals excellent agreement between the calculated and measured values of EM

was found. For BCC metals, where experimental values are less well known, the predictions
show pronounced group systematics. More recently, the same ansatz was used to estimate the
mean migration barriers in theDO3-ordered compounds Fe3Si [12], Ni3Sb [13] and Fe3Al [14]
which show fast diffusion or small activation energies of ordering kinetics. For DO3-Fe3Al, a
value of 0.5 eV was found, in good agreement with another direct experimental determination
based on positron annihilation studies [3]. Those studies helped their authors to deduce that
fast atomic mobility in DO3 intermetallics results from the combination of low migration
barriers and high vacancy concentrations [14, 15].

The purpose of the present paper is to find relations similar to equation (1) for first-nearest-
neighbour vacancy jumps in intermetallic compounds of the L12 structure. This structure (also
called Cu3Au structure) is an ordered phase on the FCC lattice. As shown schematically in
figure 1, in such an A3B compound the A atoms occupy the face centres (the α-sublattice) and
the B atoms occupy the cube corners (β-sublattice). This different occupation has important
consequences. First, there are two different types of vacancy and two different types of anti-site
defect. Consequently, starting from the fully ordered state with one vacancy, three first-nearest-
neighbour jumps into this vacancy can be distinguished (see figure 2): the jump of an atom of
type A in the α-sublattice into a vacancy (V) in the same sublattice (Aα → Vα), the jump of
an A atom in the α-sublattice into a vacancy in the β-sublattice (Aα → Vβ) and the jump of a
B atom in sublattice β into a vacancy in the α-sublattice (Bβ → Vα). Secondly, the symmetry

B

a

A

Figure 1. The L12 structure. A and B atoms occupy the α- and β-sublattices, respectively. a is
the lattice parameter. For the purpose of perspective, the atoms belonging to more distant planes
are represented by smaller circles.
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Figure 2. Starting positions for the three inequivalent first-nearest-neighbour atom jumps into a
vacancy (represented here as a square). The atoms, forming the barrier of first-nearest neighbours
that the jumping atom has to overcome, are connected by a dashed line. (a) The jump of atom
A at (0.5, 0.5, 0.0) in the α-sublattice into a vacancy at (0.5, 0.0, 0.5) in the same sublattice (the
Aα → Vα jump). The two atoms connected to the jumping atom and the vacancy by dotted lines
are the ones that prevent the migrating atom from straying too far off the straight line in the case
of � > 0 in subsection 3.3. (b) The jump of atom A at (0.5, 0.5, 0.0) in the α-sublattice into a
vacancy at (0, 0, 0) in the β-sublattice (the Aα → Vβ jump). (c) The jump of atom B at (0, 0, 0)
in the β-sublattice into a vacancy at (0.5, 0.5, 0.0) in the α-sublattice (the Bβ → Vα jump). The
coordinates are given in units of the lattice parameter a.

along the reaction path is reduced compared to that of the FCC lattice which can lead to
deviations from the straight line connecting initial and final positions of the jumping atom.

The main aim of this work is to check how, for each of the three jump types mentioned
above, the migration energy can be related to the Green function matrix for atoms A and B
analogously to equation (1), i.e. via a relation common to all L12 compounds. Due to the
difference between the sublattices, the split of the migration energy into two terms, namely
a material-independent term and one given by the Green function matrix elements of the
constituent atoms, will not be so straightforward and will have to account for the differences
between A and B atoms, leading e.g. to a curved path or a bias between the initial and final
configurations of the jump considered. Furthermore, we will have to account for the type of
neighbour (A or B) that the atom will be in contact with during the jump. The response of the
lattice will be different for ‘large’ and ‘small’ vacancies. We will show that the compounds
have to be separated into two groups, depending on the relative strengths of the repulsion
between pairs of different atoms, with the result that the relations found for one group differ
slightly from those for the other.

An important point is that, for two of the jumps (namely Aα → Vβ and Bβ → Vα), the
energy of the lattice after the jump differs from that before. Let us call this bias �E. We will
show that, depending on which of the two above-mentioned groups the compound considered
belongs to, the Green function gives either the migration energy itself or a combination of the
migration energy and �E.

This paper is organized as follows. In section 2, we recall some general features of the
static lattice Green function formalism and show how this function can be calculated from the
phonon dispersion. Section 3 is devoted to the development of the model giving access to
the migration energy for the three nearest-neighbour jumps. The molecular static calculation
procedure and the potentials used to verify the model are described in section 4. In section 5,
the migration energies are calculated and discussed for compounds whose phonon dispersions
have been measured. Conclusions are drawn in section 6.
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2. The static lattice Green function

The static lattice Green function is an important tool in the calculation of the properties of
lattices with defects [16]. It is especially useful for calculating the response of the full lattice
to forces on single atoms. If one exerts a static force Fm on atom m, the displacement of this
atom from its equilibrium position in an infinite lattice is given by

rm = GmmFm (2)

where Gmm is the static lattice Green function matrix of atom m. All of the other atoms will
relax in order to minimize the elastic energy to a value of

Eel = 1

2
FmGmmFm. (3)

Inverting equation (2) to Fm = (Gmm)−1rm the energy of the relaxed lattice can be written in
terms of the displacements:

Eel = 1

2
rm(Gmm)−1rm. (4)

In a perfect lattice, the Green function matrix elements Gmm
ij (i, j = x, y or z) can be

expressed in terms of the eigenvalues ωs(q) and eigenvectors (i.e. polarization vectors) es(q)

(s = 1, . . . , 3n where n is the number of atoms in the unit cell) of the dynamical matrix at
wave vector q which are known from fits (e.g. Born–von Karman) to the measured phonon
dispersion:

Gmm
ij =

∫
Zmm

ij (ω)

Mmω2
dω (5)

where Mm is the mass of atom m and Zmm
ij (ω) is the partial phonon density of states:

Zmm
ij (ω) = 1

3n

V

(2π)3

∑
s

∫
e
m,s
i (q)em,s

j (q)δ(ω − ωs(q)) dq. (6)

V is the volume of the unit cell and the integration extends over the first Brillouin zone. In
the case of a monatomic FCC or BCC metal, Gmm is diagonal and reduces to one number, G0,
proportional to the ω−2-moment of the phonon spectrum (see equation (1)).

In an A3B compound with the L12 structure, atom B also has cubic point symmetry and
its Green function matrix GBB reduces also to one number, GBB

xx . The point symmetry of the
A atoms is only tetragonal. For an A atom at position (0.5, 0.5, 0.0) in the unit cell, one has

GAA =
(
GAA

xx 0 0
0 GAA

xx 0
0 0 GAA

zz

)
= G̃AA +

(
� 0 0
0 � 0
0 0 −�

)
(7)

where

� = (GAA
xx − GAA

zz )/2 (8)

and G̃AA is a diagonal matrix with elements G̃ = (GAA
xx + GAA

zz )/2. (Our definition of G̃AA

instead of the proper cubic average, using tr GAA/3, avoids numerical factors in the later
expressions.) The Green function matrices for the two other A atoms in the unit cell are
obtained by circular permutation of the matrix elements.

We thus express the deviation from a cubic response function by a single constant, �,
which is a measure of the relative softness. The physics behind this can be understood if one
takes into account that in close-packed metallic lattices the nearest-neighbour interaction is
always dominant. Let us denote the longitudinal force constants for nearest-neighbour pairs of
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atoms by f AA and f AB for AA and AB pairs, respectively. In first-order perturbation theory,
� is then given by

� = (f AA − f AB)G̃2. (9)

That is, it is a measure for the change in response caused by replacing a B neighbour by an A
one. For convenience, we will in the following say atom A is ‘larger’ or ‘stronger’ than atom
B if � > 0.

In calculations of specific properties one has, of course, always to take care of the projection
to the displacement direction. In an ideal FCC lattice a displacement in any direction will strain
an effective force constant feff = 4f , again assuming a nearest-neighbour interaction with
force constant f . For a displacement in x-, y-, z-directions this feff will be equally distributed
on eight of the twelve nearest neighbours. The other four are in directions orthogonal to the
displacement vector. The projection of the displacement vector onto the vector connecting
the displaced atom to its neighbours gives a factor of 0.5 for each bond. For a displacement
in the xy-direction one has two atoms in the displacement direction, each with a projection
weight of 1. Eight other atoms contribute with a weight of 0.25, each. These different weights
of the nearest-neighbour atoms will play an important role in our later considerations. It will
clearly make a difference whether an atom of the first group or the second group is changed.
In comparing the response in the defect lattice to the one of the ideal lattice we will have to
take the nature of the defect into account (A or B vacancy). This can be done approximately
by adding the appropriate � terms.

3. The model

The migration energy EM is the potential energy needed to move an atom adiabatically from
its initial position to a first-nearest-neighbour vacancy. We want to express this energy now
in terms of the static lattice Green function, following the arguments used in reference [8] for
the case of pure FCC and BCC metals. Let us first recapitulate these arguments and only later
introduce the appropriate correction terms to account for the deviation of the L12 lattice from
the monatomic FCC one.

3.1. The monatomic FCC lattice

In the FCC lattice the energy curve E(ρ) in the reaction coordinate ρ, connecting the initial
and final positions of the jumping atom, is well reproduced by a sine shape:

E(ρ) = 1

2
EM

(
1 − cos

πρ

d

)
(10)

where d is the distance to the saddle point. For small distortions from the equilibrium positions
at ρ = 0, equation (10) can be expanded to

E(ρ) = 1

2
EM

π2

2d2
ρ2. (11)

Introducing a unit vector, um = rm/rm, one gets from equation (4) in conjunction with
equation (11)

EM = 2

π2
um(Gmm)−1umd2. (12)

In deriving this equation we assumed that the curvatures of the effective potential at the
equilibrium and saddle-point positions are equal. This, however, is only an approximation:
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usually the curvature of the potential at the saddle-point position is much smaller. Equation (12)
is improved by averaging the two curvatures, i.e. by replacing G by the average†

G = 1

2
(Gequ − Gsaddle) (13)

where Gequ refers to a relaxed lattice around the vacancy and the jumping atom at its equilibrium
position, and Gsaddle refers to a lattice with the atom at the saddle point. Simulations showed
that equations (12) and (13) reproduce EM in equation (10) within a few per cent.

Unfortunately the Green functions, needed to evaluate equation (12) and (13), are not
accessible experimentally. Therefore, in view of the fact that the structure of the vacancies and
saddle point is not very different for different FCC metals it was then assumed that there is one
structural constant connecting the ideal-lattice Green function G0 with the needed effective
G. By computer simulations a relation G ≈ 1.88G0 was found. Using d = √

2/4a and
combining the numerical factors, one thus arrives at equation (1). As was shown in the
simulations, equation (10) together with equations (12) and (13) describes the potential energy
along the action path within a few per cent. If one took a somewhat different analytic form,
there would be a shift between the geometrical factors in equation (12) and the factor 1.88.
The factor α finally used in equation (1) would, however, remain unchanged.

3.2. L12 compounds

As long as the two species A and B have similar properties, equation (1) can be used as a
suitable zero-order approximation for the L12 compounds also. The Green function element
can then be calculated, e.g. from an average phonon dispersion. This has been done for B2
and DO3 compounds ordered on a BCC lattice [12–14]. Since, however, sometimes the exact
dispersion curves are also available, we want to utilize them to calculate, to first order in �

(equation (8)), the migration energies of the individual atoms.
In general, in the compounds, the energies after and before the jump are not equal. Let

us denote this difference by �E. The potential energy curve equation (10) then has to be
amended by adding a linear term:

E(ρ) = 1

2
Ea

(
1 − cos

πρ

d

)
+

�E

�ρ
ρ (14)

where Ea = EM − �E/2 and 2d is again the distance between the two minima. As in
the monatomic case, the energy curves found in the simulations can be fitted within a few
per cent by this expression. In analogy to the results for monatomic FCC metals, one would
expect equation (1) with the appropriate Green function terms to give an estimate for Ea . We
find this for the case of smaller majority atoms (� < 0). In the opposite case, however, the
migration energy EM is gained. The reason for this dependence on the size bias will be given
in subsection 3.4.

Following the arguments used above for the monatomic FCC lattice it becomes clear
that different Green function elements will contribute to the three different vacancy jumps
shown in figure 2. In the case of the Aα → Vα jump the jump path is no longer determined
by symmetry. The jumping A atom will preferentially follow a curved path if this helps to
avoid a stiff direction. The direction of minimal-energy motion can be estimated from the
two Green function elements in question and the effective curvature can then be taken into
account. Furthermore, the vacancy can be larger or smaller than the ‘average’ one. This means,

† In reference [8] we used the average G−1 = 1
2 (G

−1
equ−G−1

saddle). The average in equation (13) gives better agreement
in the case of very strong differences between equilibrium and saddle-point curvatures.
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compared to the ideal lattice, less or more repulsion has been taken out. In first order this can
be accounted for by adding or subtracting a term proportional to �, defined in equation (8).

A more serious difficulty stems from the asymmetry of the reaction of the close-packed
lattice to ‘small’ and ‘large’ defects. This is seen in the small relaxation volume of vacancies
(the smallest substitutional defect) [17, 18]. The close packing prevents the collapse of the
vacancy. Introducing a big defect on the other hand causes an opening up and the lattice
can react. The short-range structure is dominated by the nearest-neighbour repulsion. The
balancing attractive forces are more long ranged and therefore less structure selective. We
observe a similar scenario also in our simulations of the L12 lattice; see the next section. A
lattice where the majority (A) atoms are large reacts differently to a lattice where they are
small. The first case corresponds to ‘small’ defects (B atoms), the second one to large defects.
This means that for each of the three jumps we will have to distinguish between � > 0 and
� < 0.

The programme is therefore as follows. First we determine which type of atom the moving
atom encounters in its jump. This determines the combination of Green function elements
entering our formulae. Additionally we have to look for blocking effects of ‘large’ atoms.
The resulting formulae will then be tested by simulations in the next section. Details of the
derivation of the formulae are given in the following subsections, separately for each case.

3.3. The jump Aα → Vα

In this case the jump does not involve a change of sublattice, and, therefore, the energy
difference �E = 0. The jump path (path of minimal energy) is not fully determined by
symmetry. To jump into a nearest-neighbour vacancy in the α-sublattice, atom A has to
overcome a barrier formed by its nearest neighbours, namely two atoms A and two atoms B
(see figure 2(a)), placed such that the lowest-energy path of the jumping atom towards the
vacancy is curved. The curvature of this path obviously depends on the sign of �. Figure 3
shows this for an example from our simulations, discussed in the following section.

−0.1 0.1 0.3 0.5
−0.1

0.1

0.3

0.5

∆ < 0

y

z

(a) (b)

−0.1 0.1 0.3 0.5
−0.1

0.1

0.3

0.5

∆ > 0

y

z

Figure 3. Examples of the paths (solid lines) in the x = 0.5 plane of an atom A from its equilibrium
position near (0.5, 0.5, 0.0) to a nearest-neighbour vacancy in the α-sublattice near (0.5, 0.0, 0.5)
and positions of the saddle point (filled circles). The coordinates are in units of the lattice parameter
a. The coordinate of the saddle point is (0.5, η, η) with η > 0.25 (<0.25) when � < 0 (>0).
(a) � < 0 (GAA

xx = 1.263 × 10−2 m N−1; GAA
zz = 2.201 × 10−2 m N−1). The actual value

of η is 0.37. Equation (15) gives η = 0.32. (b) � > 0 (GAA
xx = 1.106 × 10−2 m N−1;

GAA
zz = 0.894 × 10−2 m N−1). The actual value of η is 0.22. Equation (17) gives η = 0.23

and η = 0.25, respectively, in linear approximation.
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Let us take first the case � < 0, i.e. the A atoms are the less repulsive ones. The jump
path for the smaller majority atoms will avoid the larger minority atoms, i.e. the saddle-point
path will be bent away from the two B atoms of the barrier towards the two A atoms. Since
this brings the atom into contact again with A atoms it is not strongly inhibited by these
further neighbours. The position of the saddle point can be approximately calculated using the
elements of GAA. Using equation (12) one can easily show that its coordinates are, in units of
the lattice parameter,

(0.5, η, η) where η = GAA
xx

−1

2(GAA
xx

−1 + GAA
zz

−1
)

≈ 0.25

(
1 − �

G̃

)
(� < 0) (15)

where we neglected, as in the following, terms of order �2. From figure 3(a) one sees that
equation (15) describes the initial direction of the path. It underestimates the displacement
from the straight path near the saddle point. In the example, the difference between atoms A
and B is so large that the saddle point is more than the nearest-neighbour distance away from
the ideal position of the nearest B atom.

Approximating the curved path to the saddle point by a straight line connecting the
equilibrium position before the jump approximately at (0.5, 0.5, 0.0) to the approximate
position of the saddle point at (0.5, η, η), we get in analogy to equation (1) for the migration
energy

EM(Aα → Vα) = αFCCu(GAA)−1ua2 ≈ αFCCG̃
−1a2 (� < 0) (16)

where u is the unit vector in the direction (0, η − 0.5, η). This simple final expression is
formally equal to equation (1). In fact the energy gain due to the curved path compensates
for the energy penalty that would have to be paid for jumping into a vacancy smaller than the
‘average’ one.

In the opposite case (� > 0), when the A–A repulsion is stronger than the A–B one,
this equation no longer holds. The path that would be given by equation (15) is blocked by
the rigidity of the lattice of large majority atoms. The curvature of the trajectory of atom A
is reduced by the two other atoms A at the positions (0.5, 0.0, −0.5) and (0.5, −0.5, 0.0).
These two atoms (represented in figure 2(a)) prevent the trajectory from straying too far off
the straight line. The distance to these second-nearest neighbours of the vacancy and of the
jumping atom is, even for a straight path, only 10% above the nearest-neighbour distance. Any
strong curvature would, therefore, bring the jumping atom into close contact with these large
atoms. This can be taken into account by adding a term �I to GAA in equation (15), where I is
the unit matrix:

η = (GAA
xx + �)−1

2[(GAA
xx + �)−1 + (GAA

zz + �)−1]
≈ 0.25 (� > 0). (17)

In lowest order in � the jump path is a straight line, connecting the initial and final positions.
This finding is again in agreement with the simulation results; see figure 3(b).

To estimate the migration energy we can now directly apply equation (12) for the ideal
FCC lattice and only have to correct for the size of the vacancy by adding the correction term
�, giving

EM(Aα → Vα) = αFCCu(GAA + �I)−1ua2 ≈ αFCCG̃
−1

(
1 − �

G̃

)
a2 (� > 0). (18)

The migration energy is given as in an ideal average lattice corrected by a bonus for jumping
into a large vacancy.
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3.4. The jump Aα → Vβ

Contrary to the case for the previously discussed jump, here and in the following subsection,
for the jumps involving a change of sublattice, in general �E is no longer equal to zero.

To jump into a nearest-neighbour vacancy at position (0, 0, 0) in sublattice β, the atom
A at position (0.5, 0.5, 0.0) in sublattice α has to overcome a barrier formed by its nearest
neighbours, four atoms of type A. The path of minimal energy is straight due to symmetry. To
apply equation (12) we have to determine the appropriate elements of the Green function. The
barrier is composed of four atoms A. This corresponds to the direction z in the ideal lattice,
i.e. the appropriate element is GAA

zz . The size of the vacancy again is accounted for by an extra
� giving GAA

zz + � = G̃. We thus get the simple result

EM(Aα → Vβ) = αFCCu[(GAA
zz + �)I]−1ua2 ≈ αFCCG̃

−1a2 (� > 0) (19)

where u = (1, 1, 0)/
√

2. It is somewhat surprising that equation (19) gives the migration
energy directly and not, as one might expect from equation (14), EM − �E/2 = Ea . This
result which we first saw in our simulations is, as mentioned above, a result of the relative
rigidity of the L12 lattice with large majority atoms. Figuratively speaking this prevents the
jumping atom from ‘seeing’ beyond the barrier.

If A is less repulsive than B (� < 0), the second term in equation (19) gives not EM but
Ea = EM − �E/2:

EM − �E

2
(Aα → Vβ) = αFCCu[(GAA

zz + �)I]−1ua2 ≈ αFCCG̃
−1a2 (� < 0). (20)

The large B atoms are a stronger perturbation with respect to a pure A lattice. The small
jumping atom will, already at the equilibrium position, strongly feel the interaction with the
vacancy in the β-sublattice.

The difference of the two cases � > 0 and � < 0 can be understood, considering the
asymmetry between large and small defects mentioned in subsection 3.2. Similar to the case
for a monatomic FCC lattice, a vacancy in a lattice of larger majority atoms (� > 0) will only
induce a small relaxation. The vacancy on the minority lattice will be comparatively large and
the jumping atom will fit well into it. The saddle point is not affected by a volume expansion
needed to create the anti-site defect. Consequently the saddle point will not be shifted from its
position in the monatomic case and is given by the interaction with atoms forming the ‘gate’
and the split vacancy. The mainly chemical energy bias has only a minor effect. In this sense,
the migrating atom does not ‘see’ beyond the saddle point. In the opposite case, � < 0, the
lattice is less stiff and there is an appreciable relaxation of the vacancy. Removing a large
B atom causes appreciable distortions of the lattice. The jumping atom has to carry some
lattice expansion along. Its effect on the migrational saddle point is not included in the Green
function description which, therefore, gives only the contribution Ea .

A caveat has to be given as regards the validity of the relations obtained: the second terms
in equations (19) and (20) reproduce the values of EM and EM − �E/2 respectively only if
�E is not too large compared to EM . We estimate that |�E| has to be smaller than EM/2.

3.5. The jump Bβ → Vα

This case is completely analogous to the previous one. Obviously GAA has to be replaced by
GBB and � by −�, giving

EM(Bβ → Vα) = αFCCu[(GBB
xx − �)I]−1ua2 ≈ αFCCG

BB
xx

−1
(

1 +
�

GBB
xx

)
a2 (� > 0)

(21)
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and

EM − �E

2
(Bβ → Vα) = αFCCu[(GBB

xx − �)I]−1ua2

≈ αFCCG
BB
xx

−1
(

1 +
�

GBB
xx

)
a2 (� < 0). (22)

The same caveat regarding the relative values of EM and �E applies to these formulae: |�E|
has to be smaller than EM/2.

4. Computer simulations

For guidance and as a check we performed extensive simulations during the derivation of the
different formulae. We employed molecular statics—see e.g. [19]—using crystallites of up to
1372 atoms (region I). These crystallites are embedded in a crystal (region II). Atoms in region I
are allowed to relax under the influence of their mutual interaction and their interaction with
the atoms of region II which are constrained to their ideal-lattice sites. The positions of the
atoms in region I are determined by a minimization of the potential energy. This minimization
is achieved by a mixture of a steepest-descent and the conjugate gradient techniques [20]. In
order to determine energy profiles, additional geometrical constraints are built in. Because
of the fixed boundary conditions, the Green function matrix elements for the perfect lattice
are calculated not simply from (2) but from the Born–von Karman force constants using
formula (5).

As the potentials describing the interaction potentials between atoms of the same type,
we chose modified Morse and Lennard-Jones potentials smoothly cut off after the second
and eighth neighbours, respectively. The potential parameters were chosen to fit the lattice
constants, the bulk modulus and the vacancy formation energies of Ni, Cu, Al, Pd and Ag. As
the potential describing the interactions between atoms of different types we chose the average
of the two monatomic potentials. The lattice parameters of the compounds were calculated
by energy minimization with respect to the atomic coordinates. Sixteen systems forming the
L12 structures were built in this way. We would like to emphasize that we do not intend to
reproduce the atomic interactions of real L12 compounds in this way. We only wanted to have
potentials that stabilize the L12 phase, to verify the relations given in section 3 between the
computed values of the migration energies and the Green function matrix elements, based on
the assumption that those relations also hold for real compounds. Our model reproduced the
computed migration energies within 10%, as long as �E was smaller than EM/2.

Table 1. Calculated lattice parameters (in Å), perfect-lattice Green function matrix elements (in
units of 10−2 m N−1), migration energies and �E values for Ni3Al and Cu3Au obtained from
molecular dynamics calculations using embedded-atom-method (EAM) potentials [21, 22] and
values of EM or EM − �E/2 (called Ea in tables 1 and 2 to improve the layout) deduced from
our model. All the energies are in eV.

Aα → Vα Aα → Vβ Bβ → Vα

a GAA
xx GAA

zz GBB
xx EM EM �E Ea EM �E Ea

Ni3Al EAM 3.547 1.169 1.111 1.092 0.86 0.92 0.03 0.90 1.17 0.74 0.80
Model 0.91 0.93 1.00

Cu3Au EAM 3.757 1.740 2.527 1.687 0.55 0.43 −0.28 0.57 0.70 0.46 0.47
Model 0.54 0.56 0.57
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As an additional test of our formulae, we carried out subsequent simulations using
embedded-atom-method (EAM) potentials for Ni3Al and Cu3Au [21,22]. We chose the EAM
because we wanted to make a test with an interaction model with a very different structure.
Again we calculated the different migration energies and Green functions and compared the
energies with the ones deduced from our model. For Ni3Al and Cu3Au, � is positive and
negative respectively, so all the variants of the formulae given in this section can be tested.
The results are displayed in table 1. They show both the strengths and the limitations of our
model. The values of EM or EM − �E/2 for the Aα → Vα and Aα → Vβ jumps are well
reproduced by our model; however, for both compounds, due to the relatively high values
of �E (�E ≈ 0.7EM ), our estimates of the energies for the Bβ → Vα jump deviate by
about 20%.

5. Values of the migration energies and discussion

For those L12 compounds whose phonon dispersions have been measured, the perfect-lattice
Green function matrix elements and the values ofEM orEM −�E/2, deduced from our model,
are given in table 2. For the compounds considered here, those where � is positive (negative),
i.e. compounds whose A–A repulsion is stronger (weaker) than the A–B one, are those whose
majority atoms (A) are heavier (lighter) than the minority ones (B). We emphasize once again
that our model gives good energy values for the two jumps Aα → Vβ and Bβ → Vα only if
|�E| is smaller than EM/2. Our model cannot predict whether this condition will be fulfilled.

Table 2. Critical temperatures of stability of the L12 phase, melting temperatures (in K), lattice
parameters (in Å, from reference [41]), perfect-lattice Green function matrix elements (in units of
10−2 m N−1) and values of EM or EM −�E/2 (in eV) deduced from our model in section 3. For
each L12 compound, the reference to where the Born–von Karman force constants used to calculate
the Green function matrix have been found is given in the first column. All phonon dispersions
(used to deduce the force constants) were measured at room temperature, except where otherwise
stated.

Aα → Vα Aα → Vβ Bβ → Vα

A3B compound TC TM a GAA
xx GAA

zz GBB
xx EM EM Ea EM Ea

Cu3Au [36] 665 1225 3.743 1.872 2.603 1.773 0.52 0.53 0.55
Pd3Fe [37] (80 K) 955 1655 3.85 1.264 0.929 1.553 0.97 1.14 0.90
Fe3Pt [38] 1095 1835 3.73 1.407 2.319 1.371 0.59 0.63 0.64
Pt3Mn [39] (80 K) 1260 1820 3.90 0.923 0.699 2.077 1.37 1.58 0.65
Ni3Al [24] 1275 1670 3.589 1.202 1.185 1.172 0.90 0.91 0.93
Pt3Fe [38] 1575 1955 3.780 1.117 0.876 1.235 1.12 1.27 1.13
Pd3Ce [40] 1710 1710 4.112 1.624 1.863 1.262 0.82 0.82 1.03

Let us point out that, in the same way as for pure metals [8], our model gives temperature-
dependent migration energies due to the temperature dependence of the phonon dispersions.

Other direct determinations of the migration energies in L12 intermetallics are scarce.
Data exist for the widely studied Ni3Al compound. Using the embedded-atom method, Foiles
and Daw [23] calculated the migration energies 1.02, 0.91 and 1.28 eV for the Niα → Vα ,
Niα → Vβ and Alβ → Vα jumps respectively. The first two values agree with the ones from
our model (see table 2). The third one deviates by 0.35 eV. This might be due to there being
such a large bias for this jump (seen in our molecular dynamics calculations; see table 1) that
our model is being used beyond its range of applicability. However, the real migration energy
for this jump is certainly smaller than the one predicted in reference [23]. The vibrations
of the Al atoms are mainly high-frequency optical modes [24]. Stassis et al [25] measured
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those modes 2 THz below the ones calculated by Foils and Daw. In the framework of our
model, which gives a large weight to the low-frequency modes, the real migration energy for
the Alβ → Vα jump should then be markedly reduced. The migration energy for the motion
of a Ni vacancy has been estimated experimentally from positron annihilation studies after
electron irradiation [7] as EM = 1.2±0.2 eV. It is, within the uncertainty of our model (10%),
in agreement with the value of 0.9 eV determined here for the Niα → Vα jump.

Several experimental (see e.g. references [26–28]) and theoretical [29, 30] results show
that the ordering energy contributes significantly to the migration and formation energies in
intermetallic compounds. For the migration energy, this dependency has been extensively
studied by means of Monte Carlo simulations of the long-range ordering kinetics in B2 (or
CsCl) and DO3 (or Fe3Al) phases [31–34]. The Monte Carlo model, based on a nearest-
neighbour vacancy jump mechanism, relies on an Ising Hamiltonian with effective pair
interaction energies for first- and second-nearest neighbours (V1 and V2). These energies
determine the critical temperatures TC of stability of the ordered structures. Keeping V1

constant and varying the effective pair interaction energy ratio V2/V1 which is equivalent to
changing TC , one gets a significant contribution of the ordering energy to the mean migration
energy (�EM/�TC = 0.5 eV/1000 K). This result reproduces quantitatively the experimental
trends for the activation energy for self-diffusion in equiatomic FeCo [26] and the mean
migration energy in Fe3Al and Fe3Si compounds [14]. Even though we are not able to
scale all of the migration energies obtained by our model to the same V1-value (because the
effective interactions are not known for all of the compounds considered here), it is nevertheless
interesting to look at them as a function of TC , the critical temperature of stability of the L12

phase. This function is shown in figure 4 for our values of EM and EM − �E/2 determined
at 300 K. For the three types of jump, we see a clear tendency for those energies to increase
as a function of TC , indicating that, in the L12 phase also, the ordering energy contributes
significantly to the migration energies. Fitting the three sets of points to a straight line leads
to similar values of �EM/�TC (0.5 eV/1000 K) and similar intercepts of the TC = 0 axis
(0.2 eV) for the three jump types. As the migration energies have not been scaled to the same
V1-value in figure 4, we will not compare the thus-obtained value for �EM/�TC to the one
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TC (K)

0.0

0.5

1.0

1.5

E
M

 o
r 

E
M

−
∆E

/2
 (

eV
) 

Aα −> Vα
Aα −> Vβ
Bβ −> Vα

Figure 4. Values of EM or EM −�E/2 at 300 K from table 2 displayed as a function of the critical
temperature of stability of the L12 structure (TC ).



Migration energies in L12 intermetallic compounds 8157

from the Monte Carlo simulations for B2 and DO3 compounds. Monte Carlo simulations
for L12 structures using the model as described above are currently being undertaken for this
purpose [35].

6. Conclusions

We have shown that the migration energies for the three nearest-neighbour vacancy jumps in
L12 compounds can be related to the measured phonon dispersions. As was done for pure
metals (equation (1)), the energies are separated into a structural, material-independent term
(αFCC) and a material-dependent term (a combination of the perfect-lattice Green function
matrix elements of the two constituent atoms). The compounds are separated into two groups
depending on the relative size of the constituent atoms, �. In particular, for the two jump
types where the migrating atom moves from one sublattice into the other (namely Aα → Vβ

and Bβ → Vα), inducing a difference between final and initial potential energies, the Green
function matrix elements give access directly to EM when the barrier that the migrating atom
has to overcome is composed of majority atoms (A) larger than the minority ones (� > 0),
but only give access to EM − �E/2 in the opposite case (� < 0). This reflects the fact that
in the first case the lattice is mostly defined by larger majority atoms whereas in the opposite
case the larger minority atoms are a strong perturbation. The short-range repulsive forces are
in general the dominant ones in close-packed materials.

Our results should also help in the estimation of the relevant difference in energy associated
with a vacancy–atom exchange in Monte Carlo simulations of atomic mobility. Up till now, two
paths for evaluating the energy change have been followed. They are (i) taking the difference
between the energies of the final and initial states [31, 42–44] and (ii) taking the saddle-point
energy minus the initial energy [44–46], arguing that the system cannot ‘know’ a priori its
energy behind the saddle point. Our present results show that the situation in L12 compounds
is somewhat more complicated as it depends on which of the two types of atom is jumping.

Using our formulae, the values of EM or EM − �E/2 have been calculated for L12

compounds whose phonon dispersions have been measured. For the cases of the Aα → Vβ

and Bβ → Vα jumps, those energies are good estimates if �E, the difference in energy
between the final state and the initial state, is not too large with respect to EM . In the case
of the Ni3Al system, our model calculations are, within their range of application, in good
agreement with other theoretical and experimental determinations. Comparing the values of
EM or EM − �E/2 for the compounds considered with the critical temperatures of stability
of the L12 phase, we deduce that the ordering energy contributes significantly to the migration
energy and with similar strength for the three types of jump.

For the monatomic systems it has been found that similar formulae hold for both the
FCC and BCC structures [8]. A straightforward extension of our results for the close-packed
L12 structure to the more open BCC-like B2 and DO3 structures meets, however, with some
difficulty. Relaxations seem to be more important and, depending strongly on the substance,
they change the distance to the saddle point. To incorporate these effects in our formulae, more
sophisticated calculations of both migration energies and phonon dispersions are needed.
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[27] Tökei Z, Bernardini J, Gas P and Beke D L 1997 Acta Mater. 45 541
[28] Kozubski R, Soltys J, Cadeville M C, Pierron-Bohnes V, Kim T H, Schwander P, Hahn J P, Kostorz G and

Morgiel J 1993 Intermetallics 1 139
[29] Schoijet M and Girifalco L A 1968 J. Phys. Chem. Solids 29 481
[30] Schoijet M and Girifalco L A 1968 J. Phys. Chem. Solids 29 497
[31] Yaldram K, Pierron-Bohnes V, Cadeville M C and Khan M A 1995 J. Mater. Res. 10 591
[32] Kentzinger E 1996 PhD Dissertation University of Strasbourg
[33] Kentzinger E, Pierron-Bohnes V, Cadeville M C, Zemirli M, Bouzar H, Benakki M and Khan M A 1997 Defect

Diffusion Forum 143–147 333
[34] Kentzinger E, Zemirli M, Pierron-Bohnes V, Caseville M C, Bouzar H, Benakki M and Khan M A 1997 Mater.

Sci. Eng. A 239+240 784
[35] Cadeville M C et al 2000 in preparation
[36] Katano S, Iizumi M and Noda Y 1988 J. Phys. F: Met. Phys. 18 2195
[37] Stirling W G, Cowley R A and Stringfellow M W 1972 J. Phys. F: Met. Phys. 2 421
[38] Noda Y, Endoh T, Katano S and Iizumi M 1983 Physica B 120 317
[39] Paul D McK, Cowley R A and Lucas B W 1979 J. Phys. F: Met. Phys. 9 39
[40] Loong C K, Zarestky J, Stassis C, McMasters O D and Nicklow R M 1988 Phys. Rev. B 38 7365
[41] Predel B 1991 Landolt–Börnstein New Series Group IV, vol 5, ed O Madelung (Berlin: Springer)
[42] Binder K and Khalos M H 1979 Monte Carlo Methods in Statistical Physics ed K Binder (Berlin: Springer)
[43] Vives E and Planes E 1993 Phys. Rev. B 47 2557
[44] Weinkamer R, Fratzl P, Sepiol B and Vogl G 1998 Phys. Rev. B 58 3082
[45] Fultz B 1987 J. Chem. Phys. 88 3227
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